
IOSqueak Documentation
Release 2.0

MousePaw Media

Nov 09, 2022





CONTENTS

1 Contents 3
1.1 Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 IOFormat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Stringy: String Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Indices and tables 23

Index 25

i



ii



IOSqueak Documentation, Release 2.0

IOSqueak provides tools for creating beautifully formatted output, without having to memorize arcane codes. It also
allows you to categorize and prioritize your messages, and route them wherever they’re needed.

See IOSqueak’s README.md, CHANGELOG.md, BUILDING.md, and LICENSE.md for more information.

CONTENTS 1



IOSqueak Documentation, Release 2.0

2 CONTENTS



CHAPTER

ONE

CONTENTS

1.1 Channel

1.1.1 What is Channel?

Channel is designed as a wrapper and, depending on usage, a replacement for std::cout and printf(). Its sports a
number of unique and useful features.

• Multiple asynchronous outputs.

• Message priorities (verbosity).

• Message categories.

• Built-in output formatting.

• Advanced memory tools.

1.1.2 Setting up Channel

Including Channel

To include Channel, use the following:

#include "iosqueak/channel.hpp"

Channel Instance

For convenience, a single static global instance of Channel, ioc, exists in that header. It is suitable for most purposes,
though a custom channel instance may be declared. All inputs and outputs that the developer wishes to interface with
one another via this class must share the same instance.

3



IOSqueak Documentation, Release 2.0

Documentation Assumptions

For purposes of expediency, the default global static instance ioc will be used in this documentation.

1.1.3 Concepts

Channel uses two unique concepts, Verbosity and Category, to determine where and how a message is routed.

Category

The benefit to having categories on messages is that you can route different kinds of messages to different outputs.
For example, you might send all errors and warnings to a debug terminal, and reserve “normal” messages for game
notifications.

Category Enum Use
Normal IOCat::normal Regular use messages, especially those you want the user to see.
Warning IOCat::warning Warnings about potential problems.
Error IOCat::error Error messages.
Debug IOCat::debug Messages that might help you track down problems.
Testing IOCat::testing Messages related solely to testing.
All IOCat::all All of the above.

One of the advantages of this system is that you can actually leave messages in the code, and just control when and how
they are processed and broadcast. This means you can actually ship with debugging statements still alive in the code,
allowing you to diagnose problems on any machine.

You can control which of these categories messages are broadcast from using the echo settings (Internal Broadcast
Settings (Echo)) and signals (Category Signals (signal_c_...)).

Verbosity

Some messages we need to see every time, and others only in special circumstances. This is what verbosity is for.

Ver-
bosity

Enum Use

Quiet IOVrb::quiet Only essential messages and errors. For normal end-use. Shipping default.
Normal IOVrb::normal Common messages and errors. For common and normal end-user testing.
Chatty IOVrb::chatty Most messages and errors. For detailed testing and debugging.
TMI IOVrb::tmi Absolutely everything. For intense testing, detailed debugging, and driving the de-

velopers crazy.

One example of verbosity in action would be in debugging messages. A notification about a rare and potentially
problematic function being called might be IOVrb::normal, while the output of a loop iterator would probably be
IOVrb::tmi.

You can control which of these categories messages are broadcast from using the echo settings (Internal Broadcast
Settings (Echo)) and signals (Verbosity Signals (signal_v_...)).

4 Chapter 1. Contents



IOSqueak Documentation, Release 2.0

1.1.4 Output

General

All output is done using the stream insertion (<<) operator, in the same manner as with std::cout. Before a message
is broadcast, a stream control flags such as IOCtrl::endl must be passed.

IOCtrl::endl serves as an “end of transmission” [EoT] flag, clears any formatting set during the stream, and inserts a
final newline character before flushing the stream. Thus, \n is not needed if the output should be displayed on a single
line. This functionality also allows a single transmission to be split up over multiple lines, if necessary. Other stream
control enumerations have different behaviors. (See Stream Control)

ioc << "This is the first part. ";
//Some more code here.
ioc << "This is the second part." << IOCtrl::endl;

Strings

Channel natively supports string literals, cstring (char arrays), std::string, and onestring.

These are passed in using the << operator, as with anything being output via Channel. The message will not be broadcast
until an EoT (end-of-transmission) flag is passed.

ioc << "Hello, world!" << IOCtrl::endl;
//OUTPUT: "Hello, world!"

char* cstr = "I am a Cstring.\0";
ioc << cstr << IOCtrl::endl;
//OUTPUT: "I am a Cstring."

std::string stdstr = "I am a standard string.";
ioc << stdstr << IOCtrl::endl;
//OUTPUT: "I am a standard string."

Formatting

Cross-platform output formatting is built in to Channel. This means that formatting can be set using the IOFormat
flags, and it will display correctly on each output and environment.

ioc << IOFormatTextAttr::bold << IOFormatTextFG::red << "This is bold, red text. "
<< IOFormatTextAttr::underline << IOFormatTextFG::blue << IOFormatTextBG::yellow <<

→˓"This is bold, underline, blue text with a yellow background. "
<< IOFormatTextAttr::none << IOFormatTextFG::none << IOFormatTextBG::none << "This␣

→˓is normal text."
<< IOCtrl::endl;

//The output is exactly what you'd expect.

Important: Currently, only ANSI is used. Formatting-removed and an easy-to-parse formatting flag system for custom
outputs will be added soon.

Alternative, you can use the IOFormat object to store multiple flags. (See Formatting Objects)

1.1. Channel 5



IOSqueak Documentation, Release 2.0

Variable Input

Channel supports all basic C/C++ data types.

• Boolean (bool)

• Char (char)

• Integer (int) and its various forms.

• Float (float)

• Double (double)

Boolean

Output for boolean is pretty basic and boring.

bool foo = true;
ioc << foo << IOCtrl::endl;
//OUTPUT: "TRUE"

The output style can be adjusted, however, using the IOFormalBoolStyle:: flags.

bool foo = true;
ioc << IOFormalBoolStyle::lower << foo << IOCtrl::endl;
//OUTPUT: "true"
ioc << IOFormalBoolStyle::upper << foo << IOCtrl::endl;
//OUTPUT: "True"
ioc << IOFormalBoolStyle::caps << foo << IOCtrl::endl;
//OUTPUT: "TRUE"
ioc << IOFormalBoolStyle::numeral << foo << IOCtrl::endl;
//OUTPUT: "1"

Char

Since char can represent both an integer and a character, Channel lets you display it as either. By default, Channel
displays the char as a literal character. Using the IOFormatCharValue::as_int flag forces it to print as an integer.

char foo = 'A';
ioc << "Character " << foo << " has ASCII value "

<< IOFormatCharValue::as_int << foo << IOCtrl::endl;
//OUTPUT: Character A has ASCII value 65

When output as an integer, char can be used with all of the enumerations for int (see that section).

6 Chapter 1. Contents



IOSqueak Documentation, Release 2.0

Integer

An int can be represented in any base (radix) from binary (base 2) to base 35 using the IOFormatBase:: flags.

int foo = 12345;
ioc << "Binary: " << IOFormatBase::bin << foo << IOCtrl::endl;
ioc << "Octal: " << IOFormatBase::oct << foo << IOCtrl::endl;
ioc << "Decimal: " << IOFormatBase::dec << foo << IOCtrl::endl;
ioc << "Dozenal: " << IOFormatBase::doz << foo << IOCtrl::endl;
ioc << "Hexadecimal: " << IOFormatBase::hex << foo << IOCtrl::endl;
ioc << "Base 31: " << IOFormatBase::b31 << foo << IOCtrl::endl;

/*OUTPUT:
Binary: 11000000111001
Octal: 30071
Decimal: 12345
Dozenal: 7189
Hexadecimal: 3039
Base 31: cq7
*/

In bases larger than decimal (10), the letter numerals can be output as lowercase or uppercase (default) using the
IOFormatNumCase:: flags.

int foo = 187254;
ioc << "Hexadecimal Lower: " << IOFormatBase::hex << foo << IOCtrl::endl;
ioc << "Hexadecimal Upper: " << IOFormatNumCase::upper

<< IOFormatBase::hex << foo << IOCtrl::endl;

/*OUTPUT:
Hexadecimal Lower: 2db76
Hexadecimal Upper: 2DB76
*/

Float and Double

Float and Double can only be output in base 10 directly. (Hexadecimal output is only possible through a pointer memory
dump. See that section.) However, the decimal places (the number of digits after the decimal point) and use of scientific
notation can be modified. By default, decimal places is 14, and use of scientific notation is automatic for very large
and small numbers.

Decimal places can be modified using the IOFormatDecimalPlaces(#) flag. Scientific notation can be turned on
with IOFormatSciNotation::on, and off using IOFormatSciNotation::none. It can also be reset to automatic
with IOFormatSciNotation::automatic.

float foo = 12345.12345678912345;
ioc << "Decimal places 5, no sci: " << IOFormatDecimalPlaces(5) << foo << IOCtrl::endl;
ioc << "Decimal places 10, sci: " << IOFormatDecimalPlaces(10)

<< IOFormatSciNotation::on << foo << IOCtrl::endl;

/*OUTPUT:
Decimal places 5, no sci: 12345.12304

(continues on next page)

1.1. Channel 7



IOSqueak Documentation, Release 2.0

(continued from previous page)

Decimal places 10, sci: 1.2345123046e+4
*/

Both types work the same.

Pointer Output

One of the most powerful features of Channel is its handling of pointers. In addition to printing the value at known
pointer types, it can print the address or raw memory for ANY pointer, even for custom objects.

Pointer Value

By default, Channel will attempt to print the value at the pointers. This can also be forced using IOFormatPtr::value.

int foo = 12345;
int* foo_ptr = &foo;
ioc << "Value of foo: " << IOFormatPtr::value << foo_ptr << IOCtrl::endl;

char* bar = "My name is Bob, and I am a coder.\0";
ioc << "Value of bar: " << bar << IOCtrl::endl;

/*OUTPUT:
Value of foo: 12345
Value of bar: My name is Bob, and I am a coder.
*/

Pointer Address

Channel can print out the address of the pointer in hexadecimal using IOFormatPtr::address. It displays with
lowercase letter numerals by default, though these can be displayed in uppercase using IOFormatNumCase::upper.
It is capable of doing this with any pointer, even for custom objects.

int foo = 12345;
int* foo_ptr = &foo;
ioc << "Address of foo: " << IOFormatPtr::address << foo_ptr << IOCtrl::endl;

char* bar = "My name is Bob, and I am a coder.\0";
ioc << "Address of bar: " << IOFormatPtr::address << IOFormatNumCase::upper

<< bar << IOCtrl::endl;

/*OUTPUT:
Address of foo: 0x7ffc33518308
Address of bar: 0x405AF0
*/

8 Chapter 1. Contents



IOSqueak Documentation, Release 2.0

Pointer Memory Dump

Channel is capable of dumping the raw memory at any pointer using IOFormatPtr::memory. The function is safe for
pointers to most objects and atomic types, as the memory dump will automatically determine the size and will never
overrun the size of the variable. With char pointers (cstring), the only danger is when the cstring is not null terminated.

Spacing can be added between bytes (IOFormatMemSep::byte) and bytewords (IOFormatMemSep::word), or both
(IOFormatMemSep::all). By default, the memory dumps with no spacing (IOFormatMemSep::none).

int foo = 12345;
int* foo_ptr = &foo;
ioc << "Memory dump of foo: " << IOFormatPtr::memory << IOFormatMemSep::byte

<< foo_ptr << IOCtrl::endl;

char* bar = "My name is Bob, and I am a coder.\0";
ioc << "Memory dump of bar: " << IOFormatPtr::memory << IOFormatMemSep::all

<< bar << IOCtrl::endl;

/*OUTPUT:
Memory dump of foo: 39 30 00 00
Memory dump of bar: 4d 79 20 6e 61 6d 65 20 | 69 73 20 42 6f 62 2c 20 | 61 6e 64 20 49␣
→˓20 61 6d | 20 61 20 63 6f 64 65 72 | 2e 00
*/

The following dumps the raw memory for a custom object.

//Let's define a struct as our custom object, and make an instance of it.
struct CustomStruct
{

int foo = 12345;
double bar = 123.987654321;
char faz[15] = "Hello, world!\0";
void increment(){foo++;bar++;}

};
CustomStruct blah;

ioc << IOFormatPtr::memory << IOFormatMemSep::all << &blah << IOCtrl::endl;
/*OUTPUT:
39 30 00 00 00 00 00 00 | ad 1c 78 ba 35 ff 5e 40 | 48 65 6c 6c 6f 2c 20 77 | 6f 72 6c␣
→˓64 21 00 00 00
*/

You can also read memory from a void pointer, though you must specify the number of bytes to read using
IOMemReadSize().

Warning: This feature must be used with caution, as reading too many bytes can trigger segfaults or any number
of memory errors. Use the sizeof operator in the read_bytes() argument to prevent these types of problems. (See
code).

1.1. Channel 9



IOSqueak Documentation, Release 2.0

Bitset

Channel is able to intelligently output the contents of any bitset. It temporarily forces use of the
IOFormatPtr::memory flag to ensure proper output.

One may use any of the IOFormatMemSep:: flags to control the style of output. By default, IOFormatMemSep::none
is used.

bitset<32> foo = bitset<32>(12345678);
ioc << IOFormatMemSep::all << foo << IOCtrl::endl;
/* OUTPUT:
4e 61 bc 00
*/

Formatting Objects

If you find yourself regularly using particular formatting flags (IOFormat...::), you can store them in an IOFormat
object for reuse. Flags are passed into the IOFormat object with the stream insertion operator (<<), and then the
IOFormat object itself can be passed to the Channel.

IOFormat fmt;
fmt << IOFormatTextAttr::bold << IOFormatTextFG::red << IOFormatTextBG::black;

ioc << fmt << "This is bold, red text on a black background." << IOCtrl::endl;

ioc << fmt << IOFormatBG::blue << "This is bold, red text on a blue background."
<< IOCtrl::endl;

As you can see, anything passed to the Channel after the IOFormat object overrides prior options.

IOFormat supports all the flags beginning with IOFormat....

Stream Control

There are multiple enums for controlling Channel’s output.

For example, one might want to display progress on the same line, and then move to a new line for a final message.
This can be accomplished via. . .

ioc << "Let's Watch Progress!" << IOCtrl::endl;
ioc << fg_blue << ta_bold;
for(int i=0; i<100; i++)
{

//Some long drawn out code here.
ioc << i << "%" << IOCtrl::sendc;

}
ioc << io_endl;
ioc << "Wasn't that fun?" << io_endl;

/* FINAL OUTPUT:
Let's Watch Progress!
100%
Wasn't that fun?
*/

10 Chapter 1. Contents



IOSqueak Documentation, Release 2.0

The complete list of stream controls is as follows. Some notes. . .

• EoM indicates “End of Message”, meaning Channel will broadcast the message at this point.

• n is a newline.

• r is simply a carriage return (move to start of current line).

• Clear means all formatting flags are reset to their defaults.

• Flush forces stdout to refresh. This is generally necessary when overwriting a line or moving to a new line after
overwriting a previous one.

Command EoM Clear r n Flush
IOCtrl::clear X
IOCtrl::flush X
IOCtrl::end X X
IOCtrl::endc X X X X
IOCtrl::endl X X X X
IOCtrl::send X
IOCtrl::sendc X X X
IOCtrl::sendl X X X
IOCtrl::r X
IOCtrl::n X

Cursor Movement

Channel can move the cursor back and forth on ANSI-enabled terminals using the IOCursor::left and IOCursor::right
flags.

std::string buffer;
ioc << "Hello, world!"

<< IOCursor::left
<< IOCursor::left
<< IOCtrl::end;

std::getline(std::cin, buffer);

/* Will now wait for user input, while displaying "Hello, world!"
* with the cursor highlighting the 'd' character.
*/

Important: Currently, only ANSI is used. Windows support, formatting-removed, and an easy-to-parse formatting
flag system for custom outputs will be added soon.

1.1. Channel 11



IOSqueak Documentation, Release 2.0

Internal Broadcast Settings (Echo)

Channel can internally output to either printf() or std::cout (or neither). By default, it uses printf(). However, as
stated, this can be changed.

Channel’s internal output also broadcasts all messages by default. This can also be changed.

These settings are modified by passing a IOEchoMode:: flag to the configure_echo() member function.

//Set to use `std::cout`
ioc.configure_echo(IOEchoMode::cout);

//Set to use `printf` and show only error messages (any verbosity)
ioc.configure_echo(IOEchoMode::printf, IOVrb::tmi, IOCat::error);

//Set to use `cout` and show only "quiet" verbosity messages.
ioc.configure_echo(IOEchoMode::cout, IOVrb::quiet);

//Turn off internal output.
ioc.configure_echo(IOEchoMode::none);

External Broadcast with Signals

One of the primary features of Channel is that it can be connected to multiple outputs using signals. Examples of this
might be if you want to output to a log file, or display messages in a console in your interface.

Main Signal (signal_all)

The main signal is signal_all, which requires a callback function of the form void callback(std::string,
IOVrb, IOCat), as seen in the following example.

//This is our callback function.
void print(std::string msg, IOVrb vrb, IOCat cat)
{

//Handle the message however we want.
std::cout << msg;

}

//We connect the callback function to `signal_all` so we get all messages.
ioc.signal_all.add(&print);

Category Signals (signal_c_...)

Almost all categories have a signal: signal_c_normal, signal_c_warning, signal_c_error,
signal_c_testing, and signal_c_debug.

Note: IOCat::all is used internally, and does not have a signal. Use signal_all instead.

The callbacks for category signals require the form void callback(std::string, IOVrb). Below is an example.

12 Chapter 1. Contents



IOSqueak Documentation, Release 2.0

//This is our callback function.
void print_error(std::string msg, IOVrb vrb)
{

//Handle the message however we want.
std::cout << msg;

}

//We connect the callback function to signal_c_error to get only error messages.
ioc.signal_c_error.add(&print_error);

Verbosity Signals (signal_v_...)

Each verbosity has a signal: signal_v_quiet, signal_v_normal, signal_v_chatty, and signal_v_tmi. A
signal is broadcast when any message of that verbosity or lower is transmitted.

The callbacks for verbosity signals require the form void callback(std::string, IOCat). Below is an example
inside the context of a class.

class TestClass
{

public:
TestClass(){}
void output(std::string msg, IOCat cat)
{

//Handle the message however we want.
std::cout << msg;

}
~TestClass(){}

};

TestClass testObject;
ioc.signal_v_normal.add(&testObject, TestClass::output)

1.1.5 Flag Lists

Category (IOCat::)

Flag Use
IOCat::none No category; NEVER broadcasted. Does not have a correlating signal.
IOCat::normal The default value - anything that doesn’t fit elsewhere.
IOCat::warning Warnings, but not necessarily errors.
IOCat::error Error messages.
IOCat::debug Debug messages, such as variable outputs.
IOCat::testing Messages in tests. (Goldilocks automatically suppresses these during benchmarking.)
IOCat::all All message categories. Does not have a correlating signal.

1.1. Channel 13



IOSqueak Documentation, Release 2.0

Cursor Control (IOCursor::)

Flag Use
IOCursor::left Moves the cursor left one position.
IOCursor::right Moves the cursor right one position.

Echo Mode (IOEchoMode::)

Note: These cannot be passed directly to Channel.

Flag Use
IOEchoMode::none No internal output.
IOEchoMode::printf Internal output uses printf().
IOEchoMode::cout Internal output uses std::cout.

Base/Radix Format (IOFormatBase::)

Flag Base
IOFormatBase::bin 2
IOFormatBase::b2 2
IOFormatBase::ter 3
IOFormatBase::b3 3
IOFormatBase::quat 4
IOFormatBase::b4 4
IOFormatBase::quin 5
IOFormatBase::b5 5
IOFormatBase::sen 6
IOFormatBase::b6 6
IOFormatBase::sep 7
IOFormatBase::b7 7
IOFormatBase::oct 8
IOFormatBase::b8 8
IOFormatBase::b9 9
IOFormatBase::dec 10
IOFormatBase::b10 10
IOFormatBase::und 11
IOFormatBase::b11 11
IOFormatBase::duo 12
IOFormatBase::doz 12
IOFormatBase::b12 12
IOFormatBase::tri 13
IOFormatBase::b13 13
IOFormatBase::tetra 14
IOFormatBase::b14 14
IOFormatBase::pent 15

continues on next page

14 Chapter 1. Contents



IOSqueak Documentation, Release 2.0

Table 1 – continued from previous page
Flag Base
IOFormatBase::b15 15
IOFormatBase::hex 16
IOFormatBase::b16 16
IOFormatBase::b17 17
IOFormatBase::b18 18
IOFormatBase::b19 19
IOFormatBase::vig 20
IOFormatBase::b20 20
IOFormatBase::b21 21
IOFormatBase::b22 22
IOFormatBase::b23 23
IOFormatBase::b24 24
IOFormatBase::b25 25
IOFormatBase::b26 26
IOFormatBase::b27 27
IOFormatBase::b28 28
IOFormatBase::b29 29
IOFormatBase::b30 30
IOFormatBase::b31 31
IOFormatBase::b32 32
IOFormatBase::b33 33
IOFormatBase::b34 34
IOFormatBase::b35 35
IOFormatBase::b36 36

Boolean Format (IOFormalBoolStyle::)

Char Value (IOFormatCharValue::)

Enum Action
IOFormatCharValue::as_char Output chars as ASCII characters.
IOFormatCharValue::as_int Output chars as integers.

Memory Separators (IOFormatMemSep::)

Enum Action
IOFormatMemSep::no Output memory dump as one long string.
IOFormatMemSep::byte Output memory dump with spaces between bytes.
IOFormatMemSep::word Output memory dump with bars between words (8 bytes).
IOFormatMemSep::all Output memory dump with spaces between bytes and bars between words.

1.1. Channel 15



IOSqueak Documentation, Release 2.0

Numeral Case (IOFormatNumCase::)

Enum Action
IOFormatNumCase::lower Print all letter digits as lowercase.
IOFormatNumCase::upper Print all letter digits as uppercase.

Pointer Format (IOFormatPtr::)

Enum Action
IOFormatPtr::value Print the value at the address.
IOFormatPtr::address Print the actual memory address.
IOFormatPtr::memory Dump the hexadecimal representation of the memory at the address.

Scientific Notation Format (IOFormatSciNotation::)

Enum Action
IOFormatSciNotation::none No scientific notation.
IOFormatSciNotation::auto Automatically select the best option.
IOFormatSciNotation::on Force use of scientific notation.

Warning: IOFormatSciNotation::none has been known to cause truncation in very large and very small
values, regardless of decimal places.

Decimal places(IOFormatDecimalPlaces())

IOFormatDecimalPlaces(n) where n is the decimal places, as an integer representing the number of decimal places.

Text Attributes(IOFormatTextAttr::)

Enum Action
IOFormatTextAttr::none Turn off all attributes.
IOFormatTextAttr::bold Bold text.
IOFormatTextAttr::underline Underlined text.
IOFormatTextAttr::invert Invert foreground and background colors.

16 Chapter 1. Contents



IOSqueak Documentation, Release 2.0

Text Background Color(IOFormatTextBG::)

Enum Action
IOFormatTextBG::none Default text background.
IOFormatTextBG::black Black text background.
IOFormatTextBG::red Red text background.
IOFormatTextBG::green Green text background.
IOFormatTextBG::yellow Yellow text background.
IOFormatTextBG::blue Blue text background.
IOFormatTextBG::magenta Meganta text background.
IOFormatTextBG::cyan Cyan text background.
IOFormatTextBG::white White text background.

Text Foreground Color(IOFormatTextFG::)

Enum Action
IOFormatTextFG::none Default text foreground.
IOFormatTextFG::black Black text foreground.
IOFormatTextFG::red Red text foreground.
IOFormatTextFG::green Green text foreground.
IOFormatTextFG::yellow Yellow text foreground.
IOFormatTextFG::blue Blue text foreground.
IOFormatTextFG::magenta Meganta text foreground.
IOFormatTextFG::cyan Cyan text foreground.
IOFormatTextFG::white White text foreground.

Memory Dump Read Size (IOMemReadSize())

IOMemReadSize(n) where n is the number of bytes to read and print, starting at the memory address. Only used with
void pointers.

Warning: Misuse triggers undefined behavior, including SEGFAULT. Use with caution.

Verbosity (IOVrb::)

Enum Use
IOVrb::quiet Only essential messages and errors. For normal end-use. Shipping default.
IOVrb::normal Common messages and errors. For common and normal end-user testing.
IOVrb::chatty Most messages and errors. For detailed testing and debugging.
IOVrb::tmi Absolutely everything. For intense testing, detailed debugging, and driving the developers

crazy.

1.1. Channel 17



IOSqueak Documentation, Release 2.0

1.2 IOFormat

1.3 Stringy: String Utilities

These functions allow working with (and between) C-string, std::string, and other types. They’re used by the rest of
IOSqueak, but may be useful to others as well.

1.3.1 Including Stringy

To use the Stringy functions in your code, use the following:

#include "iosqueak/stringy.hpp"

1.3.2 Integer to std::string [itos()]

We can convert any integer data type, signed or unsigned, to a std::string using itos().

itos() converts the integer to a std::string. It accepts three arguments, two of which are required:

• the integer to convert,

• the base you’re working in, represented as an integer (default=10),

• whether to represent digits greater than 9 as uppercase (default=false)

// The integer to convert.
int foo = -16753;

/* Convert the float to a std::string. We're passing all the arguments,
* even though only the first two are required, for the sake of example.
*/
std::string foo_s = stringy::itos(foo, 10, false);

// Print out the std::string.
ioc << foo_s << IOCtrl::endl;

// OUTPUT: -16753

Important: Enumerations are not implicitly cast to ints with this function. Therefore, you must
static_cast<int>() any enumeration variables before passing them to this function.

18 Chapter 1. Contents



IOSqueak Documentation, Release 2.0

1.3.3 Integer to C-String [itoa() & intlen()]

We can convert any integer data type, signed or unsigned, to a C-string using itoa() and intlen().

intlen() returns the character count necessary to represent the integer as a string. It accepts three arguments, two of
which are required:

• the integer being measured,

• the base you’re working in, represented as an integer, and

• whether to include space for the sign (default=true).

itoa() converts the integer to a C-string. It accepts five arguments, two of which are required:

• the C-string to write to,

• the integer to convert,

• the base you’re working in, represented as an integer (default=10),

• the number of characters in the integer (default=0, meaning it will be internally calculated), and

• whether to represent digits greater than 9 as uppercase (default=false)

Combining these functions allows us to flexibly convert any integer to a C-string, without having to know anything in
advance.

// The integer to convert.
int foo = -16753;

/* We use the intlen function to determine the size of our C-string
* Note that we are adding one to leave room for our null terminator. */
char foo_a[stringy::intlen(foo, 10, true) + 1];

/* Convert the integer to a C-string. We're passing all the arguments,
* even though only the first two are required, for the sake of example.
* 0 for the fourth argument (size) causes the function to internally
* calculate the size of the integer again, which is another call to
* intlen(). You might save some execution time by specifying this instead.
*/
stringy::itoa(foo_a, foo, 10, 0, false);

// Print out the C-string.
ioc << foo_a << IOCtrl::endl;

// OUTPUT: -16753

Note: It is generally going to be more practical to use itos() instead.

Important: Enumerations are not implicitly cast to ints with this function. Therefore, you must
static_cast<int>() any enumeration variables before passing them to this function.

1.3. Stringy: String Utilities 19



IOSqueak Documentation, Release 2.0

1.3.4 Float to String [ftos()]

We can convert any floating-point number data type (float, double, or long double) to a std::string using ftos().

We need to specify the number of decimal places - in our case, the number of digits after the decimal point - to work
with. Because of the nature of floating point numbers, the conversion is not perfect, as we’ll see shortly.

ftos() converts the number into a C-string. It accepts three arguments, one of which are required:

• the number to convert,

• the number of decimal places (default=14), and

• whether to use scientific notation - 0=none, 1=automatic, and 2=force scientific notation (default=1).

// The integer to convert.
float foo = -65.78325;

/* Convert the float to a std::string. */
std::string foo_s = stringy::ftos(foo, 5, 1);

// Print out the std::string.
ioc << foo_s << IOCtrl::endl;

// OUTPUT: -65.78324

As you can see, the output is off by 0.00001. Again, this is because of how floating point numbers work, and the number
of decimal places we specified. If we were to raise the decimal places to the default 14, our output would actually have
been “-65.78324891505623”.

1.3.5 Float to C-String [ftoa() & floatlen()]

We can convert any floating-point data type (float, double, or long double) to a C-string using ftoa() and floatlen().

In both functions, we need to specify the number of decimal places - in our case, the number of digits after the decimal
point - to work with. Because of the nature of floating point numbers, the conversion is not perfect, as we’ll see shortly.

floatlen() returns the character count necessary to represent the floating-point number as a string. It accepts three
arguments, only one of which is required:

• the number to count the characters in,

• the number of decimal places (default=14), and

• whether to count the symbols (default=true)

ftoa() converts the number into a C-string. It accepts four arguments, two of which are required:

• the C-string to write to,

• the number to convert,

• the number of decimal places (default=14), and

• whether to use scientific notation - 0=none, 1=automatic, and 2=force scientific notation (default=1).

// The integer to convert.
float foo = -65.78325;

/* Convert the float to a std::string. */
(continues on next page)

20 Chapter 1. Contents



IOSqueak Documentation, Release 2.0

(continued from previous page)

std::string foo_s = stringy::ftos(foo, 5, 1);

// Print out the std::string.
ioc << foo_s << IOCtrl::endl;

// OUTPUT: -65.78324

As you can see, the output is off by 0.00001. Again, this is because of how floating point numbers work, and the number
of decimal places we specified. If we were to raise the decimal places to the default 14, our output would actually have
been “-65.78324891505623”.

Note: It is generally going to be more practical to use ftos() instead.

1.3.6 Split String By Tokens [split_string]

This will split a std::string by a given token and store it in a std::vector. The token will be stripped out in the
process.

Later versions of this will support Onestring and FlexArray.

std::string splitMe = "What if we:Want to split:A string:By colons?";
std::vector<std::string> result;

stringy::stdsplit(splitMe, ":", result);
// result now contains "What if we", "Want to split", "A string", "By colons?"

1.3.7 Reverse C-String [reverse_c_string()]

This will reverse a given C-string in place, overriding the string.

char foo[14] = "Hello, world!";
stringy::reverse_c_string(foo);
ioc << foo << IOCtrl::endl;

1.3. Stringy: String Utilities 21



IOSqueak Documentation, Release 2.0

22 Chapter 1. Contents



CHAPTER

TWO

INDICES AND TABLES

Note: The index is still a work in progress. If you’d like to help with this, please see our Contribution Guide.

• genindex

• search

23

https://mousepawmedia.com/developers/contributing


IOSqueak Documentation, Release 2.0

24 Chapter 2. Indices and tables



INDEX

B
base

format, 14
boolean

format, 15
output, 6

broadcast
output, 11

C
category, 13

output, 4
channel, 3
char

output, 6
char type

format, 15
color, background

format, 16
control

output, 9
cursor movement

output, 11

D
decimal places

format, 16
double

output, 7

F
float

output, 7
format

base, 14
boolean, 15
char type, 15
color, background, 16
decimal places, 16
memory separators, 15
numeral case, 15
pointers, 16

read size, 17
scientific notation, 16
text attributes, 16

format object
output, 10

formatting
output, 5

forwarding
output, 11

I
integers

output, 6

M
memory separators

format, 15

N
numeral case

format, 15

O
output, 4

boolean, 6
broadcast, 11
category, 4
char, 6
control, 9
cursor movement, 11
double, 7
float, 7
format object, 10
formatting, 5
forwarding, 11
integers, 6
pointer, 8
strings, 5
variables, 5
verbosity, 4

output, echo, 14

25



IOSqueak Documentation, Release 2.0

P
pointer

output, 8
read size, 17

pointers
format, 16
memory separators, 15

priority, see verbosity

R
radix, see base
read size

format, 17

S
scientific notation

format, 16
strings

output, 5

T
text attributes

format, 16

V
variables

output, 5
verbosity

output, 4
priority, 17

26 Index


	Contents
	Channel
	What is Channel?
	Setting up Channel
	Including Channel
	Channel Instance
	Documentation Assumptions

	Concepts
	Category
	Verbosity

	Output
	General
	Strings
	Formatting
	Variable Input
	Boolean
	Char
	Integer
	Float and Double

	Pointer Output
	Pointer Value
	Pointer Address
	Pointer Memory Dump

	Bitset
	Formatting Objects
	Stream Control
	Cursor Movement
	Internal Broadcast Settings (Echo)
	External Broadcast with Signals
	Main Signal (signal_all)
	Category Signals (signal_c_...)
	Verbosity Signals (signal_v_...)


	Flag Lists
	Category (IOCat::)
	Cursor Control (IOCursor::)
	Echo Mode (IOEchoMode::)
	Base/Radix Format (IOFormatBase::)
	Boolean Format (IOFormalBoolStyle::)
	Char Value (IOFormatCharValue::)
	Memory Separators (IOFormatMemSep::)
	Numeral Case (IOFormatNumCase::)
	Pointer Format (IOFormatPtr::)
	Scientific Notation Format (IOFormatSciNotation::)
	Decimal places(IOFormatDecimalPlaces())
	Text Attributes(IOFormatTextAttr::)
	Text Background Color(IOFormatTextBG::)
	Text Foreground Color(IOFormatTextFG::)
	Memory Dump Read Size (IOMemReadSize())
	Verbosity (IOVrb::)


	IOFormat
	Stringy: String Utilities
	Including Stringy
	Integer to std::string [itos()]
	Integer to C-String [itoa() & intlen()]
	Float to String [ftos()]
	Float to C-String [ftoa() & floatlen()]
	Split String By Tokens [split_string]
	Reverse C-String [reverse_c_string()]


	Indices and tables
	Index

