

Ratscript Documentation

Ratscript is a programming language based on the idea that a programming
language should be intentionally designed. It embraces the goals that the
language should resemble common logic more than computer logic, have a
shallow initial learning curve to make it easy to grasp by non-programmers, and
should foster conscientious programming habits, encouraging less-experienced
programmers to default to safer and more effective methods and algorithms.

See Ratscript’s README.md, CHANGELOG.md, BUILDING.md, and
LICENSE.md for more technical information.

Contents:

	Syntax and Design
	Vision

	Document Conventions

	Language Structure
	Whitespace

	Comments

	Subordination

	Attributes

	Keywords

Indices and tables

	Index

	Search Page

Syntax and Design

Vision

The design of Ratscript’s syntax has three goals:

	Explicit: Make behavior obvious from the syntax.

	Simple: Lower the learning curve for beginning users.

	Elegant: Maintain usability by experienced programmers.

Glossary

	compound statement: a statement made up of one or more clauses. For
example, an if statement.

	clause; a single header-suite pair in a compound statement, such as the
else clause in an if/else compound statement.

	expression: a unit of code that can be evaluated to a value.

	header: the top part of a clause, usually defining how and when the clause
will be executed.

	name: a textual reference to a value in memory, in the context of a
variable. Names have both scope and type, and are bound to a value.

	statement: a single, executable unit of code.

	suite: the body part of a clause, subordinated to a header.

	value: any object or piece of data in memory, which can be bound to one or
more names. Values have type, but no scope.

	variable: a value in memory associated with a name.

Note

In Python, names have scope, but no type; values have type, but no scope.
In Ratscript, names have both scope and type, while values only have scope.
Ratscript names can be “rebound” to a new value, as long as that value is
the same type.

Document Conventions

Note

Notes, TODOs, and proposed statements are formatted like this (blue block)
to make them easier to find.

Warning

Design Principles: These are notes about design principles.

This is a code example.

Language Structure

Ratscript draws inspiration from many languages, but it has no direct parents.
It is most closely comparable with Python, although many of its core features
differentiate it even there.

Warning

Design Principle: Syntax is chosen for suitability and ease-of-use,
not for familiarity or tradition.

Whitespace

The Ratscript language largely ignores whitespace, except as important for
determining the boundaries of names.

We will formalize a style, which will include whitespace recommendations.

Line Termination

All lines of code in Ratscript are simply terminated by the newline character
\n.

print("Hello, world!")
print("I am Ratscript.")

#> Hello, world!
#> I am Ratscript.

If the user wants to continue typing beyond one line, they can do so with the
ellipsis ... token, as in the following example.

print("Hello, world! I...
am Ratscript.")

#> Hello, world! I am Ratscript.

However, the ... must be the last characters (except whitespace) on a line
for line continuation. The following would throw an error.

COUNTEREXAMPLE
print("My name is Bond... James
 Bond.")

The line continuation should work in all situations, as long as it’s at the end
of a line.

let x = 5 + 7 ...
 + 13 + 9

x
#> 34

Comments

Line and Inline Comments

A line comment is denoted with the hash # at the start of the comment. This
symbol tells the compiler that everything until the newline is a comment,
allowing for both line and inline comments.

This is a single line comment.
print("Hello, world!") # This is an inline comment.

Multiline Comments

##
This is a multiline comment.
A multiline comment is denoted with `##` at the start,
and `##` at the end.
##

After the initial ##, all subsequent # (and whitespace) are ignored
until another character is encountered. This is a valid multiline comment then:

###
FANCY
BANNER
HERE
###

Documentation Commenting

Documentation comments are denoted with #!.

#! This is a documentation comment.

##!
You can create multiline documentation comment like this.
The closing tag is the same as a normal multiline comment.
##

Terminal Output

All command line output begins with #> to make it a valid line comment, for
convenience when copy-pasting.

Error messages are also preceded with /!\ to make them easier to spot.

#> This is command line output.
#> /!\ This is an error message.

Subordination

Ratscript uses a very unique way of defining “blocks”: the
subordination operator. While this is unusual (hey, brackets were too,
once!), it offers a few advantages, as you’ll see.

Subordination Operator

The subordination operator is the semicolon ;, chosen because of its
location on the home row on QWERTY keyboards.

The whitespace around the ; operator is ignored, so you can use traditional
indenting as it suits your needs and preferences. The recommended style is used
herein, and outlined in style.

Here’s the subordination operator in use:

if foo
; if bar
; ; if baz
; ; ; do_thing()
; ; else
; ; ; do_other_thing()
; ; end if
; end if
end if

This offers the unique advantage of being able to see how deeply nested ANY line
is out of context, merely by the number of ; operators before it. What’s
further, when space-padded in the recommended style depicted, it aids the eye in
drawing a direct line between statements at the same level. Third, it’s more
visible than whitespace indentation.

By being able to “subordinate” any line to any other line, we can add additional
information to virtually any line. (See attributes.)

make chinese_name as string
; <encoding "utf-16">

make fibonacci(num as integer!)
; <recursion MAX>
; <return as integer>
; if num < 2
; ; return num
; else
; ; return fibonacci(num-1) + fibonacci(n-2)
; end if

Multi-lining Statements

The subordination operator may appear in the middle of a line, for creating
one-line statements. (This is one other reason we chose the semicolon.)

For example, the following…

if answer == 42
; print("What's the question?")

…could be rewritten as…

if answer == 42 ; print("What's the question?")

The depth of nesting still matters however, as seen here:

if searching
; if answer == 42 ;; print("What's the question?")

We have to use two ;; to separate, otherwise the suite will become
disconnected from its header.

Here are some more examples:

if foo == 42; do_thing(); do_other_thing()

if foo == 42
; do_thing()
; do_other_thing()

make name = "Jason" ; <encoding=utf-8>

These, however, do not work:

do_thing_one(); do_thing_two() # invalid!
do_thing_one(); # invalid, don't end with a semicolon

This helps enforce good style, as it’s already considered bad practice in nearly
all languages to combine two disparate statements on the same line.

Attributes

Ratscript allows applying attributes to anything. (This can be used for many
things.)

Attributes are defined in corner brackets < >, and are subordinated to the
definition of whatever they modify.

make name = "Jason"
; <encoding="utf-8">

make num = 65.9
; <precision="double">

make do_thing()
; <recursion=100>
; print("Hi!")
; doThing() # this would stop recursing after a depth of 100

These are basically just compile-time variables/properties.

Built-In Attributes

Some attributes are built-in. You can also define a custom attribute on a class or function. (See classes)

	Class Attributes

	

	<key=member>

	The key member of a class, used for casting and hashing

	<private>

	A class member that is only visible from within the class

	<protected>

	A class member that is only writable from within the class

	<static>

	A static class member

	Function Attributes

	

	<throw>

	Function has the potential to throw an error

	Variable Attributes

	

	<encoding="utf-8">

	string encoding

	<precision="double">

	float precision

Keywords

The following are keywords in Ratscript. Actual behavior will typically be
described elsewhere.

	assert

	and

	break

	case

	class

	continue

	define

	elif or else if

	else

	end

	fall

	false

	finally

	for

	if

	let

	make

	nil

	or

	panic

	pass

	print

	return

	switch

	test

	this

	until

	warn

	while

Index

 nav.xhtml

 Table of Contents

 		
 Ratscript Documentation

 		
 Syntax and Design

 		
 Vision

 		
 Glossary

 		
 Document Conventions

 		
 Language Structure

 		
 Whitespace

 		
 Line Termination

 		
 Comments

 		
 Line and Inline Comments

 		
 Multiline Comments

 		
 Documentation Commenting

 		
 Terminal Output

 		
 Subordination

 		
 Subordination Operator

 		
 Attributes

 		
 Built-In Attributes

 		
 Keywords

_static/file.png

_static/ratscript_weblogo.png
”script

Norvegicus

_static/minus.png

_static/plus.png

