

Goldilocks 2.0 Documentation

Goldilocks is a complete testing and runtime-benchmark framework,
based on MousePaw Media’s LIT Standard. Although
LIT is inherently different from “unit testing” and
TDD, Goldilocks may be used for either
approach. It may also be used in conjunction with other testing systems.

The core idea of Goldilocks is that tests ship in the final code,
and can be loaded and executed within normal program execution via
a custom interface. A major advantage of this system is that tests and
benchmarks may be performed on many systems without the need for harnesses,
debug flags, or additional software.

The fastest way to run tests in Goldilocks is with the Shell.

Contents:

	Tests
	Test()

	pre()

	prefail()

	run()

	janitor()

	post()

	postmortem()

	Expect
	Macros

	That

	Should

	Suites

	Manager

	Benchmarker

	Shell

Indices and tables

	Index

	Module Index

	Search Page

Tests

Every Goldilocks test is derived from the Test abstract class, which has
multiple functions that may be overloaded.

Test()

This is the class’s construtor. Derived class must call the Test
constructor and pass the name and docstring as follows:

SomeTest()
: Test("test_name", "Some test documentation string here.")
{}

pre()

This is an optional function that sets up the test to be run. In cases where
a test is run multiple consecutive times, it is only called once. Thus, it
must be possible to call pre() once, and then successfully call run()
any number of times.

The function must return true if setup was successful, and false otherwise,
to make sure the appropriate actions are taken.

prefail()

This is an optional function that tears down the test after a failed call to
pre(). It is the only function to be called in that situation, and it
will not be called under any other circumstances. It has no fail handler
itself, so prefail() must succeed in any reasonable circumstance.

The function returns nothing.

run()

This is a required function for any test. It contains all the code for
the test run itself. After pre() is called once (optionally), run()
must be able to handle any number of consecutive calls to itself.

There must always be a version of run() that accepts no arguments.
However, it is not uncommon to overload run() to accept a scenario string
(part of the LIT Standard) for generating a particular scenario, or
prompting a random one to be generated.

The function should return true if the test succeeded, and false if it failed.

Important

run() (with no arguments) should be consistent in its
success. Assuming pre() was successful, if the first consecutive call to
run() is successful, all subsequent calls to run() must also be successful.
This is vital to the benchmarker functions, as they can call a single test
up to 10,000 times. One consideration, then, is that run() should only use
one scenario in a single lifetime, unless explicitly instructed by its
function arguments to do otherwise.

janitor()

This is called after each repeat of run() during benchmarking and
comparative benchmarking. It is designed to perform cleanup in between
run() calls, but not to perform first time setup (pre()) or end of
testing (post()) cleanup. Must return a boolean indicating success.

Janitor is always called before each call to run() or run_optimized(),
including before the first run() call.

post()

This is an optional function which is called at the end of a test’s normal
lifetime. It is the primary teardown function, generally responsible for
cleaning up whatever was created in pre(), janitor() and run().
It is normally only called if run() returns true, although it will be called
at the end of benchmarking regardless of run()’s success.

This function returns nothing. It has no fail handler itself,
so post() should succeed in all reasonable circumstances.

postmortem()

This is an optional teardown function which is usually called if a test fails
(run() or run_optimized() returns false). It is responsible for cleaning
up whatever was created in pre() and run(), much like post() is, but
again only for those scenarios where run() fails.

This function returns nothing. If not defined, calls post().
It has no fail handler itself, so postmortem() should succeed
in all reasonable circumstances.

Creating a Test

Creating a test is as simple as creating a class that inherits from
Test (from goldilocks.hpp), which is a pure virtual base class.

Important

The constructor and destructor must obviously be defined,
however, it is not recommended that they actually do anything - all setup
and teardown tasks must be handled by the other functions in order to
ensure proper functionality - a test instance is defined once when
Goldilocks is set up, but it is highly likely to have multiple lifetimes.

Only bool run() must be defined in a test class. The rest of the
functions are already defined (they do nothing other than return true),
so you only need to define them if you require them to do something.

The following example exhibits a properly-defined, though overly
simplistic, test. In reality, we could have skipped pre(), prefail(),
janitor(), postmortem(), and post(), but they are defined to
demonstrate their behavior.

#include <iochannel.hpp>
#include <goldilocks.hpp>

class TestFoo : public Test
{
public:
 TestFoo(){}

 testdoc_t get_title()
 {
 return "Example Test";
 }

 testdoc_t get_docs()
 {
 return "This is the docstring for our example test."
 }

 bool pre()
 {
 ioc << cat_testing << "Do Pre Stuff" << IOCtrl::endl;
 return true;
 }
 bool prefail()
 {
 ioc << cat_testing << "Do Prefail Stuff" << IOCtrl::endl;
 return true;
 }
 bool run()
 {
 ioc << cat_testing << "Do Test Stuff" << IOCtrl::endl;
 char str[5000] = {'\0'};
 for(int a=0;a<5000;a++)
 {
 str[a] = 'A';
 }
 return true;
 }
 bool janitor()
 {
 ioc << cat_testing << "Do Janitorial Stuff" << IOCtrl::endl;
 return true;
 }
 bool postmortem()
 {
 ioc << cat_testing << "Do Postmortem Stuff" << IOCtrl::endl;
 return true;
 }
 bool post()
 {
 ioc << cat_testing << "Do Post Stuff" << IOCtrl::endl;
 return true;
 }
 ~TestFoo(){}
};

Registering a Test

Registering a test with Goldilocks is a trivial task, thanks to its
register_test() function. Once a test class has been defined, as above,
simply register it via…

//Assuming testmanager is our instance of the Goldilocks test manager.
testmanager.register_test("TestFoo", new TestFoo);

Goldilocks will now actually own the instance of TestFoo, and automatically
handle its deletion at the proper time.

Warning

Goldilocks actually requires exclusive ownership of each test
object registered to it - thus, you should always pass the new declaration
as the second argument. If you create the object first, and then pass the
pointer, you run a high risk of a segfault or other undefined behavior.

The test can now be called by name using Goldilocks’ various functions. (See below.)

You can also optionally register a comparative test for benchmarking, which
will be run against the main test in the benchmarker.

//Assuming testmanager is our instance of the Goldilocks test manager.
testmanager.register_test("TestFoo", new TestFoo, new TestBar);

Running a Test

Once a test is registered with Goldilocks, running it is quite easy.

//Run the test once.
testmanager.run_test("TestFoo");

//Benchmark TestFoo on 100 repetitions.
testmanager.run_benchmark("TestFoo", 100);

Expect

An Expect is a single expression whose evaluation is monitored
and recorded. Tests are generally composed of one or more Expectations.

The structure of an Expect is as follows:

Expect<That, Should=Should::Pass>(value, expected_value);

Some expectations have additional arguments, but the template parameters
are the same throughout.

Macros

An Expect is executed in a Test via one of three macros: REQUIRE,
UNLESS, or CHECK.

Typically, these macros would be used in the run() function of a
Test, but they can also be used anywhere else in the Test where you need
to verify an expectation before continuing.

REQUIRE

Requires an Expect to be met, else the function will fail.

REQUIRE(Expect<That::IsEqual>(40, 40)); // okay
REQUIRE(Expect<That::IsEqual>(2, 3)); // causes function to return false

CHECK

Evaluates an Expect, but never causes the function to fail.

CHECK(Expect<That::IsEqual>(40, 40)); // okay
CHECK(Expect<That::IsEqual>(2, 3)); // okay, although Expect failed

UNLESS

Requires an Expect to fail, else the function will fail.
Unlike Should::Fail, this lets the Expect still fail as normal,
but the function succeeds.

In practice, you’re usually better off using Should::Fail in your
Expect instead of this macro. This is only if you want the Expect itself to
fail, but the function to pass as a result.

UNLESS(Expect<That::IsEqual>(true, false)); // okay
UNLESS(Expect<That::IsEqual>(2, 2); // causes function to return false

That

The behavior of the Expect is primarily determined by the That::
template parameter.

Most of these expectations depend on the indicated comparison operator being
supported by all data types passed to the That::`. For example, if you use
``Expect<That::IsLess>(foo, bar), then the types of foo and bar must
be comparable via foo < bar.

IsTrue

Expect<That::IsTrue>(op)

Expects op to implicitly evaluate to true:

return (op == true);

If op is a non-null pointer, dereferences op and evaluates
value. If op is nullptr, the Expect fails.

IsFalse

Expect<That::IsFalse>(op)

Expects op to implicitly evaluate to false:

return (op == false);

If op is a non-null pointer, dereferences op and evaluates
value. If op is nullptr, the Expect fails.

IsEqual

Expect<That::IsEqual>(left, right)

Expects left and right to evaluate as equal:

return (left == right);

If either left or right are non-null pointers, they are
dereferenced as appropriate, and the evaluation is run against the two values.
If either is nullptr, the Expect fails.

IsNotEqual

Expect<That::IsNotEqual>(left, right)

Expects left and right to evaluate as not equal:

return (left != right);

If either left or right are non-null pointers, they are
dereferenced as appropriate, and the evaluation is run against the two values.
If either is nullptr, the Expect fails.

IsLess

Expect<That::IsLess>(left, right)

Expects left evaluates to less than right:

return (left < right);

If either left or right are non-null pointers, they are
dereferenced as appropriate, and the evaluation is run against the two values.
If either is nullptr, the Expect fails.

IsLessEqual

Expect<That::IsLessEqual>(left, right)

Expects left evaluates to less than or equal to right:

return (left <= right);

If either left or right are non-null pointers, they are
dereferenced as appropriate, and the evaluation is run against the two values.
If either is nullptr, the Expect fails.

IsGreater

Expect<That::IsGreater>(left, right)

Expects left evaluates to greater than right:

return (left > right);

If either left or right are non-null pointers, they are
dereferenced as appropriate, and the evaluation is run against the two values.
If either is nullptr, the Expect fails.

IsGreaterEqual

Expect<That::IsGreaterEqual>(left, right)

Expects left evaluates to greater than or equal to right:

return (left >= right);

If either left or right are non-null pointers, they are
dereferenced as appropriate, and the evaluation is run against the two values.
If either is nullptr, the Expect fails.

PtrIsNull

Expect<That::PtrIsNull>(ptr)

You must pass a pointer to this. Expects the pointer ptr to be nullptr:

return (ptr == nullptr);

PtrIsNotNull

Expect<That::PtrIsNotNull>(ptr)

You must pass a pointer to this. Expects the pointer ptr to not
be nullptr:

return (ptr != nullptr);

PtrIsEqual

Expect<That::PtrIsEqual>(left, right)

You must pass pointers to this. Expects the pointers left and right
to point to the same address in memory:

return (left == right);

This does not check that the pointers are non-null or valid,
nor does it check that the pointers can be dereferenced.

PtrIsNotEqual

Expect<That::PtrIsNotEqual>(left, right)

You must pass pointers to this. Expects the pointers left and right
to not point to the same address in memory:

return (left != right);

This does not check that the pointers are non-null or valid,
nor does it check that the pointers can be dereferenced.

FuncReturns

Expect<That::FuncReturns>(target, name_hint, func, args...)

Passes the arguments args... to the function func, and
expects the returned value to match target.

return (func(args...) == target);

The argument name_hint is a string. It is used only for displaying the
name of the function in the test report.

FuncThrows

Expect<That::FuncThrows>(target, name_hint, func, args...)

Passes the arguments args... to the function func, and
expects the returned value to throw the exception target.

try {
 func(args...);
} catch (const T& e) { // T is type of target
 return true;
} catch (...) {
 return false;
}
return false;

If the function is not supposed to throw anything, you can
pass the value Nothing() to target.

The argument name_hint is used only for displaying the name
of the function in the test report.

IsApproxEqual

Expect<That::IsApproxEqual>(value, target, margin)

Expects value to be approximately equal to target, within the margin.

return ((value - target) < 0 ? ((value - target) * (-1.0)) < margin : (value - target) < margin));

If value is a non-null pointer, dereferences value and evaluates. If value is nullptr, returns false.

return (value != nullptr && (*value - target) < 0 ? ((*value - target) * (-1.0)) < margin : (*value - target) < margin);

IsApproxNotEqual

Expect<That::IsApproxNotEqual>(value, target, margin)

Expects value to not be approximately equal to target, within the margin.

return ((value - target) < 0 ? ((value - target) * (-1.0)) > margin : (value - target) > margin);

If value is a non-null pointer, dereferences value and evaluates. If value is nullptr, returns false.

return (value != nullptr && (*value - target) < 0 ? ((*value - target) * (-1.0)) > margin : (*value - target) > margin));

IsInRange

Expect<That::IsInRange>(value, lower, upper)

Expects value to be in the inclusive range defined by lower and upper.

return (value >= lower && value <= upper);

If value is a non-null pointer, dereferences value and evaluates. If op is nullptr, returns false.

return (value != nullptr && *value >= lower && *value <= upper);

IsNotInRange

Expect<That::IsNotInRange>(value, lower, upper)

Expects value to be outside the inclusive range defined by lower and upper.

return (value < lower || value > upper);

If value is a non-null pointer, dereferences value and evaluates. If op is nullptr, returns false.

return (value != nullptr && (*value < lower || *value > upper));

Should

The Should template parameter determines how the outcome of the
evaluation is interpreted.

Should::Pass means the evaluation should succeed for the expectation
to be met. This is the default.

Should::Fail means the evaluation is NOT supposed to succeed for the
expectation to be met. This is useful for guarding against false positives.

Minute min(60);
Hour hour(1);
Hour bad_hour(2);

// Check min == hour
REQUIRE(Expect<That::IsEqual>(min, hour));

// Check min != hour
REQUIRE(Expect<That::IsNotEqual>(min, bad_hour));

// Check min == bad_hour FAILS
REQUIRE(Expect<That::IsEqual, Should::Fail>(min, bad_hour));

// If the last Expect was OK, that would mean `min == bad_hour`, throwing
// the reliability of `min == hour` into doubt.

Should::Pass_Silent and Should::Fail_Silent are the same as
their non-silent counterparts, but if the expectation is met, no output is
produced. Instead, output is only produced if the expectation is NOT met.

Suites

Manager

Benchmarker

Shell

Index

 T

T

 	
 	
 test

 	creating

 	pre()

 	registering

 	running

 	TEST()

 nav.xhtml

 Table of Contents

 		
 Goldilocks 2.0 Documentation

 		
 Tests

 		
 Test()

 		
 pre()

 		
 prefail()

 		
 run()

 		
 janitor()

 		
 post()

 		
 postmortem()

 		
 Creating a Test

 		
 Registering a Test

 		
 Running a Test

 		
 Expect

 		
 Macros

 		
 REQUIRE

 		
 CHECK

 		
 UNLESS

 		
 That

 		
 IsTrue

 		
 IsFalse

 		
 IsEqual

 		
 IsNotEqual

 		
 IsLess

 		
 IsLessEqual

 		
 IsGreater

 		
 IsGreaterEqual

 		
 PtrIsNull

 		
 PtrIsNotNull

 		
 PtrIsEqual

 		
 PtrIsNotEqual

 		
 FuncReturns

 		
 FuncThrows

 		
 IsApproxEqual

 		
 IsApproxNotEqual

 		
 IsInRange

 		
 IsNotInRange

 		
 Should

 		
 Suites

 		
 Manager

 		
 Benchmarker

 		
 Shell

_static/minus.png

_static/plus.png

_static/file.png

